
Sustainable Security & Safety: Challenges and Opportunities
Andrew Paverd

Aalto University, Finland
andrew.paverd@ieee.org

Marcus Völp
University of Luxembourg

marcus.voelp@uni.lu

Ferdinand Brasser
TU Darmstadt, Germany

ferdinand.brasser@trust.tu-
darmstadt.de

Matthias Schunter
Intel Labs, Germany

matthias.schunter@intel.com

N. Asokan
Aalto University, Finland

asokan@acm.org

Ahmad-Reza Sadeghi
TU Darmstadt, Germany
ahmad.sadeghi@trust.tu-

darmstadt.de

Paulo Esteves-Veríssimo
University of Luxembourg
paulo.verissimo@uni.lu

Andreas Steininger
TU Wien, Austria

steininger@ecs.tuwien.ac.at

Thorsten Holz
Ruhr-University Bochum, Germany

thorsten.holz@rub.de

ABSTRACT
A significant proportion of today’s information and communica-
tion technology (ICT) systems are entrusted with high value assets,
and our modern society has become increasingly dependent on
these systems operating safely and securely over their anticipated
lifetimes. However, we observe a mismatch between the lifetimes
expected from ICT-supported systems (such as autonomous cars)
and the duration for which these systems are able to remain safe
and secure, given the spectrum of threats they face. Whereas most
systems today are constructed within the constraints of foreseeable
technology advancements, we argue that long term, i.e., sustain-
able security & safety, requires anticipating the unforeseeable and
preparing systems for threats not known today. In this paper, we set
out our vision for sustainable security & safety. We summarize the
main challenges in realizing this desideratum in real-world systems,
and we identify several design principles that could address these
challenges and serve as building blocks for achieving this vision.

1 INTRODUCTION
With the exception of a handful of systems, such as the two Voyager
spacecraft control systems and the computers in the US intercon-
tinental ballistic missile silos,1 information and communication
technology systems (ICT) rarely reach a commercially viable life-
time that ranges into the 25+ years we have come to expect from
long-lived systems like cars2, as shown in Figure 1. Worse, rarely
any networked ICT system stays secure over such a lifetime, even
if actively maintained.

Despite this potential risk, current ICT subsystems are already
being integrated into systems with significantly longer design life-
times. For example, electronic control units in modern (self-driving)
cars, the networked control systems in critical infrastructure (e.g.,
cyber-physical systems in power plants and water treatment fa-
cilities), and computer controlled building facilities (a.k.a. smart
buildings) are all examples of this mismatch in design lifetimes.
This is also applicable beyond cyber-physical systems: for example,
genomic data is privacy-sensitive for at least the lifetime of the

1http://www.dailymail.co.uk/news/article-2614323/Americas-feared-nuclear-
missile-facilities-controlled-computers-1960s-floppy-disks.html
2https://www.aarp.org/money/budgeting-saving/info-05-2009/cars_that_last.html

Figure 1: Survival probability of passenger cars by age [2]

person (if not longer), and yet it is being protected by cryptographic
algorithms with a significantly shorter expected lifespan [14]. For
the currently envisioned limited lifetime, the (functional) safety
community has developed techniques to prevent harm despite ac-
cidental faults [23]. However, for the ICT systems in the above
scenarios we aim to preserve security and safetime for the design
lifetime, and often beyond. This means that they need to preserve
the value and trust in the assets entrusted to them, their safety
properties (i.e., resilience to accidental faults) and their security
properties (i.e., resilience to malicious faults, such as targeted and
persistent attacks). Even when compared to existing approaches to
achieve resilience (such as the safety approaches mentioned above),
these lifetimes translate into ultra-long periods of secure and safe
operation.

To address this impending challenge, we introduce a new para-
digm, which we call sustainable security & safety (S3). The central
goal is that a system should be able to maintain its security and
safety, but desirably also its functionality for at least its design life-
time. This is particularly relevant for systems that have significantly
longer design lifetimes than their ICT subsystems (e.g., modern
cars, airplanes, and other cyber physical systems). In its broadest
sense, S3 encompasses both technical and non-technical aspects,
and some of the arising challenges span both aspects.

1

http://www.dailymail.co.uk/news/article-2614323/Americas-feared-nuclear-missile-facilities-controlled-computers-1960s-floppy-disks.html
http://www.dailymail.co.uk/news/article-2614323/Americas-feared-nuclear-missile-facilities-controlled-computers-1960s-floppy-disks.html
https://www.aarp.org/money/budgeting-saving/info-05-2009/cars_that_last.html


From a technical perspective, S3 brings together aspects of two
well-studied technical fields: security and dependability. Security
research typically begins by anticipating a certain class of adversary,
characterized by a threat model based on well-known pre-existing
threats at the time the system is designed. From this model, defense
mechanisms are then derived for protecting the system against the
anticipated adversaries or for recovering from these known attacks.
Dependability, on the other hand, begins with the premise that
some components of a system will fail, and investigates how to
tolerate faults originating from these known subsystem failures.
Again, the type, likelihood, and consequences of faults are assumed
to be known and captured in the fault and fault-propagation models.

The term security-dependability gap [30] is a prototypical ex-
ample of why established solutions from the dependability field
cannot be directly used to address security hazards, and vice-versa.
The problem of sustainable security has been recognized by other
established researchers, as well, stating that safety and security
will be more interweaved, evoking new research directions: For
instance, to keep software-driven systems, like modern cars, secure
over long periods of time they need to be supplied with software
patches for decades, which is currently an unsolved problem [3].

These problems are not only challenging from technological
perspectives, but also require the reorganization and adaption of
non-technical aspects, like safety regulations, standardization bod-
ies, and law making and enforcement [3]. Indeed many standardiza-
tion and certification processes lack security consideration, a fact
that was recognized by the European Commission, leading to an
investigation of open problems and opportunities in today’s area
of Internet of Things [28, 29].

The security-dependability gap arises from the way risks are
assessed in safety-critical systems: safety certifications assess risks
as a combination of stochastic events, whereas security risks arise
as a consequence of intentional malicious adversaries, and thus
cannot be accurately characterized in the same way. What is a
residual uncertainty in the former, becomes a strong likelihood in
the latter.

Therefore, there are two defining characteristics of S3:
• Firstly, it aims to bridge the safety-security gap by considering

the complementarity of these two fields as well as the interplay
between them, and addressing the above-mentioned problems
under a common body of knowledge, seeking to prevent, detect,
remove and/or tolerate both accidental faults and vulnerabili-
ties, and malicious attacks and intrusions.

• Secondly, it aims to protect systems beyond the foreseeable hori-
zon of technological (and non-technological) advances and
therefore cannot be based solely on the characterizations of
adversaries and faults as we know them today. Instead we begin
from the premise that a long-lived system will face changes, at-
tacks, and accidental faults that were not possible to anticipate
during the design of the system.

The central challenge is therefore to design systems that can main-
tain their security and safety properties in light of these unknowns.

2 SYSTEM MODEL
Sustainable security & safety is a desirable property of any critical
system, but is particularly relevant to long-lived systems, especially

those that are easily accessible to attackers. These systems are likely
to be comparatively complex, consisting of multiple subsystems and
depending on various external systems. Without loss of generality,
we use the following terminology in this paper, which is aligned
with other proposed taxonomies, such as [4]:
• System: a composition of multiple subsystems. The subsystems

can be homogeneous (e.g., nodes in a swarm) or heterogeneous
(e.g., components in an autonomous vehicle).

• Failure: degradation of functionality and/or performance be-
yond a specified threshold.

• Error: deviation from the correct service state of a system.
Errors may lead to subsequent failures.

• Fault: adjudged or hypothesized cause of an error (e.g., a dor-
mant vulnerability of the system through which adversaries
may infiltrate the system, causing an error which leads to a
system failure).

• System failure: failure of the overall system (typically with
catastrophic effect).

• Subsystem failure: failure of an individual subsystem. The
overall system may be equipped with precautions to tolerate
certain subsystem failures. In this case, subsystem failures can
be considered as faults in the overall system.

• Single point of failure: any subsystem whose failure alone
results in system failure.

S3 aims to achieve the following two goals:

(1) Avoid system failure: The primary goal is to avoid fail-
ure of the overall system, including those originating from
unforeseeable causes and future attacks. Note that avoid-
ing system failure refers to both the safety and security
properties of the system (e.g., a breach of data confidential-
ity or integrity could be a system failure, for certain types
of systems).

(2) Minimize overheads and costs: Anticipating and miti-
gating additional threats generally increases the overheads
(e.g., performance and energy) as well as the initial costs
(e.g., direct costs and increased design time) of the system.
In addition, higher system complexity (e.g., larger code
size) may lead to increased fault rates and an increased at-
tack surface. On the other hand, premature system failure
may also have associated costs, such as downtime, mainte-
nance costs, or penalties. Therefore, a secondary goal of S3
is to develop technologies and approaches that minimize
all these potential overheads and costs.

3 CHALLENGES OF LONG-TERM OPERATION
In our S3 paradigm, we accept that we cannot know the precise
nature of the attacks, faults, and changes that a long-lived system
will face during its lifetime. However, we can identify and reason
about the fundamental classes of events that could arise during the
system’s lifetime and that are relevant to the system’s security and
dependability. Although these events are not exclusive to long-term
operation, they become more likely as the designed lifetime of the
system increases. We first summarize the main classes of challenges,
and then discuss each in detail in the following subsections.

Subsystem failures: In consequence of the above uncertainty
about the root cause and nature of faults leading to subsystem

2



failure, traditional solutions, such as enumerating all possible faults
and devising mitigation strategies for each fault class individually,
are no longer applicable. Instead, reasoning about these causes must
anticipate a residual risk of unknown faults ultimately leading to
subsystem failures and, treating them as faults of the system as
a whole, mechanisms included that are capable of mitigating the
effects of such failures at the system level. Subsystem failures could
be the result of random events or deliberate attacks, possibly due to
new types of attack vectors being discovered. In the most general
case, any type of subsystem could fail, including hardware failures,
software attacks, and failures due to incorrect specifications of these
subsystems.

Requirement changes: The requirements of the system could
change during its lifetime. For example, the security requirements
of a system could change due to new regulations (e.g., the EU Gen-
eral Data Protection Regulation) or shifts in societal expectations.
The expected lifetime of the system itself could even be changed
subsequent to its design.

Environmental changes: The environment in which the sys-
tem operates could change during the system’s design lifetime. This
could include changes in other interdependent systems. For exam-
ple, the United States government can selectively deny access to the
GPS system, which is used by autonomous vehicles for localization.

Maintainer changes: Most systems have the notion of a main-
tainer — the physical or logical entity that maintains the system
for some part of its design lifetime. For example, in addition to the
mechanical maintenance (replacing brakes, oil, etc.) Tesla vehicles
regularly receive over-the-air software updates from the manufac-
turer.3 For many systems, the maintainer needs to be trusted to
sustain the security and safety of the maintained system. However,
especially in long-lived systems, the maintainer may change (e.g.,
the vehicle is instead maintained by a third party service provider),
which gives rise to both technical and non-technical challenges.

Ownership changes: Finally, if a system has the notion of an
owner, it is possible that this owner will change over the lifetime
of the system, especially if the system is long-lived. For example,
vehicles are often resold, perhaps even multiple times, during their
design lifetimes. Change of ownership has consequences because
the owner usually has privileged access to the system. A system
may also be collectively owned (e.g., an apartment block may be
collectively owned by the owners of the individual apartments).

A Subsystem Failures
We anticipate subsystem failures at the hardware level, software
level, and specification level. In all cases, the technical challenge is
how to cope with this subsystem failure. In other words, treating
the subsystem failure as a fault of the overall system, how can the
system as a whole maintain safe and secure operation despite that
fault?

A.1 Hardware failure. Individual subsystems may experience
hardware failure during the lifetime of the system. This failure
could be random, systematic, or attacker-induced and may be tran-
sient or persistent. We distinguish faults in the peripheral support
systems (such as the power supply) from faults in the sensors and

3https://www.tesla.com/support/software-updates

actuators of control systems and from faults in the processors in
peripheral devices and in the main controlling units, while focusing
in the following primarily on this third class of faults due to the sig-
nificant higher complexity of these components. Redundant power
supply infrastructures and mechanically fault tolerant actuators
(e.g., with 2/3rd pressure overrides in airplane elevator actuators)
are examples of solutions to address the former two classes. We
further distinguish faults in the very building blocks of modern
processors from faults at the architectural level, which, although be-
ing hardware, share many similarities with software faults. Clearly,
fault mitigation strategies largely differ between systems that re-
main accessible during active maintenance phases and that can be
replaced in the presence of faults in a commercially viable man-
ner from those systems that can no longer be accessed or only at
unbearable costs. For the former class, detection and diagnosis of
hardware-level subsystem failures become prime objectives, fol-
lowed by the initiation of the replacement process. Hardware-fault
mitigation in not as accessible systems, on the other hand, has
to focus on mechanisms to extend the hardware lifelime and on
strategies to gracefully remove no-longer working, but left in the
field, subsystems.

Extending Hardware Lifetime: Like flash memory cells, essen-
tially all kinds of transistors wear out over time.4 The root cause
for this wear out is charges dissipating from the positively and
negatively doped regions into the gate, changing the bandgap char-
acteristics of the transistor. This causes the transistor and eventually
the circuit to fail.

Emergingmaterialsmay offer a solution to loss of doping-induced
charge separation. For example Silicon Nanowire reconfigurable
field effect transistors (SiNW-RFETs) [36] and similar 1D-transistor
structures (like Carbon nanotube or Carbon ribbon transistors) re-
quire no doping and are therefore immune to doping-related ageing
or malicious wearout attacks. Instead, charges at a second reconfig-
uration gate define the transistor type (i.e., whether it exhibits P-
or N-type behavior).

Like wear leveling, fail-over to redundantly installed circuits is
one of the existing solutions to extend the lifetime of hardware
circuits.4 However, long-term sustainable security & safety requires
a much more aggressive application of such solutions, possibly in
addition to solutions for relocating highly sensitive functionality
(like the trusted platform module) to spare hardware while irrecov-
erably destroying the secrets embedded in the old hardware. This
gives rise to the following challenges:
A.1.(1) How can we protect spares from environmental and ad-

versarial influences such that they remain available when
they are required?

A.1.(2) How can we assert the sustainability of emerging material
circuits, without at the same time giving adversaries the
tools to stress and ultimately break these circuits?

Architectural Faults: At the architectural level, the same design
and implementation flaws that cause software to fail apply, although
to a lesser extent also at the hardware level. Let us elaborate on this
using the example of hardware side channels.

4https://spectrum.ieee.org/semiconductors/processors/transistor-aging

3

https://www.tesla.com/support/software-updates
https://spectrum.ieee.org/semiconductors/processors/transistor-aging


Meltdown [31] and the different Spectre variants [25] recently
reminded us how brittle security can be at the hardware level,
in particular for highly performance-optimized systems. Micro-
architectural side channels have been studied for a long time re-
sulting in both various attacks [9, 18, 22, 26, 32, 38, 41, 53] as well
as defenses [7, 10, 11] and research on software-level side channels
goes all the way back to Lampson’s seminal paper in 1973 [27]. The
root cause of these side channels is the shared use of resources
between supposedly isolated domains, e.g., the concurrent use of
memory caches leads to leakage of memory access patterns po-
tentially leaking sensitive information such as cryptographic keys.
These attacks have been shown to be able to overcome the isola-
tion between individual processes [26, 53], between processes and
the kernel [21], between virtual machines [22, 32, 53], as well as
the isolation of trusted execution environments (TEEs) like Intel
SGX [9, 18, 38, 41]. Recently micro-architectural effects have been
used in a new class of powerful attacks that allow attackers to cir-
cumvent isolation between different security domains and extract
virtually all memory content across domain boundaries [25, 31, 42].
By exploiting the fact that memory access control is not enforced for
CPU-internal state, e.g., during speculative execution, information
can be extracted. In particular, this applies when the adversary can
manipulate the CPU-internal state to have an effect on an observ-
able side channel [31]. More generally, recently attacks exploiting
hardware bugs (or undocumented behavior) from software are in-
creasing. For instance, on ARM systems, the misconfiguration of the
power management system can impact security critical functionali-
ties in the ARM TrustZone’s secure world [47]. The rowhammer
bug [24] enables an adversary to flip bits in memory of another
security domain, which can be triggered and exploited in various
scenarios [6, 19, 42, 48], e.g., for escalating privileges from a user
process to kernel privileges [42].

Defences against micro-architectural side-channel attacks and
hardware bugs usually cannot be easily or efficiently implemented
in software [7, 11]. While individual software defense solutions
can be considered practical they usually only provide protection
against individual bugs or a small class of bugs [8]. Modifications
in the hardware design allow much simpler solutions with less
impact on the system’s performance but cannot be deployed in
legacy systems [13].

The primary challenge at the hardware architectural level is
therefore how can we construct containment domains such that
despite failure of individual subsystems, the system as a whole can
survive in a safe and securemanner or gracefully shut downwithout
compromising security if the former is no longer possible? With
side channels on the one hand and integrity threats like rowhammer
on the other, this leads to the following specific challenges:

A.1.(3) How can we protect confidential information in subsys-
tems or, if this is not possible over extended periods of time,
how can we ensure confidential information is securely
transferred and protected in its new location without resid-
uals in the source subsystem revealing this information?

A.1.(4) How can we prevent one compromised hardware subsys-
tem from compromising the integrity of another subsys-
tem?

From what we observe today, solutions to these challenges can-
not focus either on hardware or on software separately. Instead,
most of the challenges we identify in this section require combined
hardware and software solutions.

Graceful exclusion of faulty hardware subsystems: As in fact every
physical implementation will exhibit some susceptibility to exter-
nal disturbances, be they accidental or malicious, mechanisms are
required to gracefully exclude faulty hardware subsystems from
the overall subsystem operation. Of course, for sufficiently isolated
components, solutions such as secret removal, communication pre-
vention (e.g., to address babbeling idiots) and ultimately the shut-
down of the device are possible solutions, bearing only the risk
of prevention through an interposing adversary (e.g., reactivating
an already shut down device). For more tightly integrated compo-
nents, confinement of their behavior in the presence of external
disturbances, has to start from sound models how certain circuits
and logic elements react to external disturbance mechanisms, a
problem which remains largely unsolved. Its solution would allow
to conclusively confine the erroneous behavior of a submodule
without introducing costly hardware-level isolation mechanisms
(such as moats and drawbridges [20]) and without at the same time
excluding the peripheral components of the malfunctioning unit,
which happen to reside in the same isolation domain. The primary
challenges for graceful exclusion of faulty hardware subsystems
are therefore:
A.1.(5) How canwe prevent adversaries from exploiting/triggering

safety/security functionality of excluded components?
A.1.(6) How can we model erroneous behavior of hardware com-

ponents in the presence of external disturbances?
A.1.(7) How can we construct inexpensive, fine grain isolation

domains to confine such errors?

A.2 Software failure. Software attacks are constantly evolving
and new vulnerabilities are discovered in software products almost
every day.5 Even worse, software vulnerabilities have become a
valuable commodities traded in (black) markets.6 Over the past
years software attacks and defenses have been in a constant arms
race. New defense mechanisms like control-flow integrity (CFI) [1]
have been proposed to defeat different classes of attacks, such
as return-oriented programming [43], and have been broken by
later, more sophisticated attacks, e.g., control-flow bending [12],
COOP [40], etc. It is not hard to imagine that this arms race will
continue and new vulnerabilities and attack techniques will be dis-
covered in the future. This makes it challenging to develop software
systems that will remain secure in light of new attacks unknown at
the time of development/deployment. Additionally, attack vectors
that are closed in desktop and server systems, like code injection
attacks, which can be prevented with data execution prevention
(DEP),7 are still a threat for many other classes of devices, in partic-
ular embedded systems. This gives rise to the following challenges:
A.2.(1) How to design systems that can detect and isolate software

subsystem failures?

5https://techtalk.gfi.com/2015s-mvps-the-most-vulnerable-players/
6http://zerodium.com/
7https://support.microsoft.com/en-gbus/help/875352/a-detailed-description-of-the-
data-execution-prevention-dep-feature-in

4

https://techtalk.gfi.com/2015s-mvps-the-most-vulnerable-players/
http://zerodium.com/
https://support.microsoft.com/en-gbus/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-gbus/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in


A.2.(2) How to transfer software attack mitigation strategies be-
tween domains (e.g., PC to embedded)?

A.3 Subsystem compromise. The constant discovery of vulnera-
bilities in software as well as the fact that over time new attacks
methods are developed lead to the situation that we have to expect
subsystems to get compromised at some point in the systems life
time. Unlike random failures targeted attacks propagate through
multiple subsystems by exploiting control over one subsystem to
gain control over another. Also, the adversary can ensure that the be-
havior (e.g., interactions with other subsystems) of a compromised
subsystem remains correct to hide the attack make the detection of
stealthy attacks particularly challenging. Additionally, if a subsys-
tem is compromised all confidentiality guarantees are voided, i.e.,
if the subsystem has access to a secret like a cryptographic key the
adversary will extract that key. Hence, even if the subsystem can
be reset or even updated the key’s confidentiality remains compro-
mised and the subsystem needs to be re-provisioned. This raises
the following technical challenges:

A.3.(1) How to recover a system when multiple subsystems are
compromised?

A.3.(2) How to detect that a subsystem is compromised by a stealthy
adversary?

A.3.(3) How to react to the detection of a (potentially) compro-
mised subsystem?

A.3.(4) How to prevent the leakage of sensitive information from
a compromised subsystem?

A.3.(5) How to securely re-provision a subsystem after all its se-
crets have been leaked?

A.4 Specification failure. Even if all defects in the software and
hardware implementations could be removed, e.g., by formally ver-
ifying all parts of the implementation, the system may still fail due
to faults in the specification. The primary challenge with faults
at the specification level is to rule out common-mode problems,
which carry the potential to affect most, if not all implementations
of a given specification. Moreover, as we discuss in the later sub-
sections, a change of requirements or environment may also affect
the specifications and the validity of assumptions upon which they
depend.

An important subclass of specification failure is assumption fail-
ure, which encompasses all cases in which the assumptions used
in the specifications cease to hold. For example, the correctness
of cryptographic algorithms and protocols often hinges on the as-
sumption of certain problems being computationally hard. However,
this may no longer hold as new computational capabilities (e.g.,
quantum computers) or new mathematical insights come to light.
At worst, algorithms based on such assumptions could constitute a
single point of failure for the system, causing a full system failure if
not mitigated before adversarial exploitation. For example, failure
of one or more of the cryptographic algorithms used in systems like
Bitcoin could have catastrophic consequences on the system [15].

Specification-level failures give rise to the following technical
challenges:

A.4.(1) How to design subsystems that may fail at the implementa-
tion, but not at the specification level (and at what costs)?

A.4.(2) If specification faults are inevitable, how to design systems
in which subsystems can follow different specifications
whilst providing the same functionality, in order to benefit
from diversity of specifications and assumptions?

A.4.(3) How to recover when one of the essential systems has been
broken due to a specification error (e.g., how to recover
from a compromised cryptographic subsystem)?

In addition to the hardware, software, and specification failures
described above, a subsystem could also fail for other reasons, in-
cluding changes to third-party dependencies (see Section C) or the
subsystem becoming unmaintained (see Section D).

B Requirement Changes
B.1 Regulatory changes. Even though a system is compliant

with current regulations at the time of design, it is possible that
the regulatory (legal) framework will change during the lifetime
of the system. In some cases, pre-existing systems might be explic-
itly excluded from such changes. However, if the changes concern
safety or security, it is likely that they will be applied to all sys-
tems, including those already deployed. For example, the recent EU
General Data Protection Regulation (GDPR) applies to all systems,
irrespective of when they were designed. This gives rise to the
following technical challenges:
B.1.(1) How to retroactively change the designed security, privacy,

and/or safety guarantees of a system?
B.1.(2) How to prove that an already-deployed system complies

with new regulations?

B.2 User expectation changes. More subtly than an explicit
change in regulation, the expectations of the users may change
with regard to security and safety. For example, improvements in
braking technology on cars have led to shorter stopping distances,
which has arguably changed the expectation of drivers and pedestri-
ans over time. Although this example is a limitation of the system’s
hardware, Tesla has recently demonstrated the ability to improve
the braking performance of vehicles with only a software update.8
In addition to the challenges in dealing with regulatory changes,
this gives rise to the following technical challenge:
B.2.(1) How can a system be extended and adapted to meet new

expectations after deployment?
B.2.(2) How to demonstrate to users and other stakeholders that

an already-deployed system meets their new expectations?

B.3 Design lifetime changes. One important category of a change
in user expectation is a change in the intended or expected design
lifetime of the system. For example, the Mars rovers Spirit and
Opportunity have been laid out for a guaranteed mission time of
90 days on Mars (approximately 92 days on Earth), which both
rovers exceeded significantly. While Spirit was abandoned after
7 years of operation, Opportunity was active for almost 15 years,
i.e., almost 60 times the initially planned mission duration. This
is critical because the extension of a system’s design lifetime may
exacerbate all the challenges described above. This gives rise to the
following technical challenges:

8http://fortune.com/2018/05/27/tesla-model-3-braking-update/

5

http://fortune.com/2018/05/27/tesla-model-3-braking-update/


B.3.(1) How to determinewhether a deployed systemwill retain its
safety and security guarantees for an even longer lifetime?

B.3.(2) How to further extend the safety and security guarantees
of a deployed system?

C Environmental changes
C.1 New threat vectors. Despite extensive efforts in identify-

ing and mitigating covert and side channels, many of the recent
hardware-level vulnerabilities (like Meltdown [31], Spectre [25] and
Rowhammer [42]) and, in particular, the ease of exploiting them,
came as a surprise. In the future, we expect many more of these
surprises to happen as researchers, but also less honest individu-
als (putting dishonest researchers into the latter class) continue to
investigate the security and safety of systems and as the environ-
ments in which systems execute change. The main challenges are
therefore:
C.1.(1) How to tolerate failure of subsystems due to unforeseeable

threats?
C.1.(2) How to avoid single points of failure that could be suscep-

tible to unforeseen threats?
C.1.(3) How to improve the modeling of couplings and dependen-

cies between subsystems such that the space of “unfore-
seeable” threats can be minimized?

Naturally, one may take the position that countering the unfore-
seeable is a futile task due to the unknown nature of what may
happen, and this position may turn out to be valid. Nevertheless,
we believe measures can be taken to improve the tolerance de-
spite unknowns, including anticipating unlikely incidents without
disqualifying them due to their rareness and, most importantly,
by not addressing safety and security separately. Safety vulnera-
bilities, which are rarely triggered by random events and natural
causes, may well become a threat when exploited by intentional
adversaries.

C.2 Unilateral system/service changes. Any non-trivial system
is likely to depend on various external third-party systems or ser-
vices. Failures or unilateral changes in these may have an impact on
a long-lived system. For example, modern standards-compliant web
servers are no longer permitted to accept SSLv3 connections for
security reasons.9 Any client systems still relying on this protocol
would thus be unable to connect. There is a clear security reason
for this change, and it is beneficial to force clients to upgrade, but it
assumes that all clients have the ability to upgrade. This change was
also forewarned well in advance. However, this may not be the case
for all changes, and thus systems must be able to adapt sufficiently
quickly. This gives rise to the following technical challenge:
C.2.(1) How to design systems such that any third-party services

on which they depend can be safely and securely changed?
C.2.(2) How can a system handle unilateral changes of (external)

systems or services?

C.3 Third-party system/service fails. Amore severe case is when
a third-party service fails, which often takes place without prior
warning. In the simplest case a service is not reachable anymore due
to connectivity loss, i.e., failure of the service’s network connection,

9https://tools.ietf.org/html/rfc7568

the system’s network connection, or a failure in some intermediate
network infrastructure like the Internet. Similar, many secure sys-
tems depend on the public key infrastructure (PKI), which is based
on trust in Certificate Authorities (CAs). However, evidence has
shown that CAs can fail by losing this trust (e.g., as the result of
key compromise).10 Furthermore, third-party systems or services
are usually beyond the control of the maintainer, for example, the
United States government can selectively deny access to the GPS
system, which essentially constitutes a failure of the system. In
addition to the challenge above, this gives rise to the following
technical challenge:
C.3.(1) How can a system handle the failure or unavailability of

external services?
C.3.(2) How to design systems such that any third-party services

on which they depend can be safely and securely changed
after they have already failed?

C.4 Maintenance resource becomes unavailable. During the life-
time of the system, the tools or resources required to maintain the
system could become unavailable. This applies to physical tools,
software tools (e.g., compilers), and human resources. In a long-
lived system, it may become increasingly difficult to find software
developers with the necessary skills to update/maintain older tech-
nologies. For example, it is estimated that USD 3 trillion in daily
commerce still flows through systems running COBOL,11 a lan-
guage rarely taught today. The very high cost to replace these
systems means that maintainers are forced to rely on a shrinking
pool of COBOL developers to fix issues and update the systems.
This gives rise to the following technical challenges:
C.4.(1) How to identify all maintenance resources required by a

system?
C.4.(2) How to maximize the maintenance lifetime of a system

whilst minimizing cost?
C.4.(3) How to continue maintaining a system when a required

resource becomes completely unavailable?

D Maintainer Changes
For various reasons the maintainer of the system might need to be
changed. For example, the original maintainer could stop providing
updates. However, allowing someone else to take over the role of
the maintainer raises various security and dependability challenges.

D.1 Implementing a change of maintainer. Firstly there is the
question of who gets to decide when to change maintainer, and who
the newmaintainer should be. On one hand, the owner of the system
has an interest in minimizing cost and keeping the system running,
whichmay not be possible if the original maintainer stops providing
updates or goes out of business. On the other hand, the original
maintainer (e.g., the car manufacturer) may still have ongoing legal
obligations/liabilities for the system during this time, or may suffer
a loss of reputation if the system fails due to improper maintenance.
When a change of maintainer takes place, there is also a need to
securely convey this change to the system. If this functionality is

10https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-
servers-103112/77170/
11https://www.reuters.com/article/us-usa-banks-cobol/banks-scramble-to-fix-old-
systems-as-it-cowboys-ride-into-sunset-idUSKBN17C0D8

6

https://tools.ietf.org/html/rfc7568
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://threatpost.com/final-report-diginotar-hack-shows-total-compromise-ca-servers-103112/77170/
https://www.reuters.com/article/us-usa-banks-cobol/banks-scramble-to-fix-old-systems-as-it-cowboys-ride-into-sunset-idUSKBN17C0D8
https://www.reuters.com/article/us-usa-banks-cobol/banks-scramble-to-fix-old-systems-as-it-cowboys-ride-into-sunset-idUSKBN17C0D8


not protected, it can be abused by an adversary to take over the role
of maintainer. This gives rise to the following technical challenge:

D.1.(1) How to ensure that a system remains secure and safe even
under a new maintainer?

D.1.(2) How to securely inform the system that a change of main-
tainer has taken place?

D.2 System becomes unmaintained. For various reasons the sys-
tem could become unmaintained during its lifetime. For example,
the manufacturer could stop providing updates, or the owner could
neglect to update the system (e.g., an owner who blocks software
updates). In any case, the system needs to detect that maintenance
is not provided any more, e.g., by notification from previous main-
tainer or automatic detection.When loss of maintenance is detected,
how should a system be designed to maximize its effective lifetime?
An unmaintained system is generally less able to respond to attacks
and needs a strategy to react to this situation (e.g., shutdown or
allow anyone to take over the maintainer role). This gives rise to
the following technical challenges:

D.2.(1) How can a system decide that it is no longer maintained?
D.2.(2) How should an unmaintained system behave?

E Ownership Changes
In many scenarios, proof-of-presence is used to set up credentials
for subsequent proof-of-possession authentication, e.g., on a typical
desktop system the owner is allowed to install new keys into the
UEFI secure boot system when physically present in front of the
computer. This allows the owner to boot arbitrary (potentially
malicious) operating systems and software.When these keys remain
on the system after ownership changes they can serve the old owner
as a gateway to attack the system. On the other hand, sensitive
data of an old owner can be targeted by a new system owner, e.g.,
re-sold smartphones regularly contain sensitive information of the
previous owner.12

Transitioning from proof-of-presence to more direct proof of pos-
session schemes (such as smardcard-based authentication) avoids
some of the above problems, but introduces others (e.g., loss or
theft of authenticating tokens). In the following, we distinguish
cooperative from non-cooperative ownership changes.

E.1 Cooperative ownership changes. The system may change
ownership between two cooperative entities (e.g., a car is sold or a
rental car is returned). However, although the entities cooperate
to perform this change, they may still be adversarial from each
other’s perspective. For example, the system my contain valuable
information from the previous owner (e.g., personal information,
access credentials, or payment details) that the new owner may
attempt to learn. Conversely, the previous owner may attempt to
retain access to the system either to obtain data about the new
owner (e.g., snoop on the new owner), or even maliciously control
the system. This gives rise to the following technical challenges:

E.1.(1) How to securely inform the system about the change in
ownership, without opening a potential attack vector?

12http://www.govtech.com/security/Massive-Volume-of-Sensitive-Data-on.html

E.1.(2) How to erase sensitive data during transfer of ownership,
without allowing the previous owner to later erase us-
age/data of the new owner?

E.2 Non-cooperative ownership change. In addition to the chal-
lenges of a cooperative ownership change, there may be circum-
stances in which the current owner is unwilling or unable to partic-
ipate in any ownership change protocol (e.g., a car is impounded or
repossessed from the owner and sold to a new owner). It is assumed
that there is still some other legal basis to legitimize the change of
ownership (e.g., contract or legal regulation), but this needs to be
reflected in the technical design of the system. This is challenging
because the non-technical basis for such an ownership change may
itself change over the lifetime of the system (e.g., the law might
change, see section 3.5.1). This gives rise to the following technical
challenge:

E.2.(1) How to automatically detect non-cooperative ownership
change?

E.2.(2) How to erase sensitive data after loss of ownership, without
allowing the previous owner to erase usage/data of the new
owner?

4 TECHNICAL IMPLICATIONS
The challenges identified in Section 3 lead to a number of technical
implications, which we highlight in the following before presenting
more concrete proposals to address sustainable security & safety in
the next section. In particular, the realization that any subsystem
may fail, especially given currently unforeseeable threat vectors,
and the realization that subsystem failure is a fault in the overall
system, demands a principled treatment of faults.

Although safety and security independently developed solutions
to characterize the risk associated with faults, we observe a gap
to be closed, not only for automotive systems [30], but also in
any ICT system where risks are assessed based on the probability
of occurrence. Once exposed to adversaries, it is no longer suffi-
cient to capture the likelihood of natural causes coming together
as probability distributions. Instead, probabilistic risk assessment
must take into consideration the incentives, luck, and intents of
increasingly well-equipped and highly skilled hacking teams. The
conclusion may well be high risk probabilities, in particular when
irrational hackers (such as cyberterrorists) are taken into account.
Also, naively applying techniques, principles, and paradigms used
in isolation in either safety or security will not solve the whole
problem, and worse, may interfere with each other. Moreover, to
reach sustainability, any such technique must withstand long-term
operation, significantly exceeding that of recent approaches to re-
silience.

For example, executing a service in a triple modular redundant
fashion increases tolerance against accidental faults in one of the
replicas. However, it does not help to protect a secret passed to the
individual replicas by encrypting this secret for each replica and
with the replica’s key. Once the key of a single compromised replica
is extracted, confidentiality is breached and the secret revealed.
Further, if a replica fails due to an attack rather than a random fault,
replaying the attack after resetting this replica will often recreate
this failure and eventually exhaust the healthy majority.

7

http://www.govtech.com/security/Massive-Volume-of-Sensitive-Data-on.html


Figure 2: Means to attain dependability and security.

To approach sustainable security & safety, we need a common
descriptor for the root-cause of problems in both fields — faults
— and a principled approach to address them [49, 50]. As already
pointed out in [4], faults can be accidental, for example, due to nat-
ural causes, following a stochastic distribution and hence justifying
the argument brought forward in safety cases that the residual risk
of a combination of rare events is within a threshold of accepted
risks. However, faults can also be malicious, caused by intentional
adversaries exploiting reachable vulnerabilities to penetrate the
system and then having an up to 100% chance of triggering the
combination of rare events that may lead to catastrophe. Faults can
assume several facets, and the properties affected are the union of
those both fields and are concerned with: reliability, availability,
maintainability, integrity, confidentiality, etc.

Returning to the above example, treating a confidentiality breach
as a fault, it becomes evident why encrypting the whole secret for
each replica individually constitutes a single point of failure. It
also gives rise to possible solutions, such as secret sharing [44],
but further research is required to ensure long-term secrecy for
those application fields that require this, e.g., simple secret shar-
ing schemes do not tolerate a mobile adversary that subsequently
compromises and releases one replica at a time.

In the long run, failure of individual subsystems within the life-
time of the overall system becomes an expected occurrence. We
therefore distinguish normal failure (e.g., ageing causing unavail-
ability of a subsystem’s functionality) from catastrophic failure
(causing unintended system behavior), and devise means to attain
dependability and security despite both.

4.1 S3 Lifecycle
Figure 2 sketches the path towards attaining dependability and
security, and principled methods that can be applied over the life-
time of the system to obtain sustainable security & safety. Faults in
subsystems manifest from attacks exploiting reachable vulnerabili-
ties in the specification and implementation of the subsystem or
from accidental causes. Without further provisioning, faults may
manifest in errors, which may ultimately lead to failure of the sub-
system. Here we take only the view of a single subsystem, which
may well fail without inevitably implying system failure. More pre-
cisely, when extending the picture in Figure 2 to the overall system,

subsystem failures manifest as system faults, which must be caught
at the latest at the fault tolerance step. It may well be too late to
recover the system as a whole after a failure has manifested, since
this failure may already have compromised security or caused a
catastrophe (indicated by the red arrow).

4.1.1 Design. Before deployment, the most important steps to-
wards sustainable security & safety involve preparing the system
as a whole for the consequences of long-term operation. In the next
section, we sketch early insights what such a design may involve.
Equally important is to reduce the number of vulnerabilities in
the system, to raise the bar for adversaries. Fault and vulnerabil-
ity prevention starts from a rigorous design and implementation,
supported for example by advanced testing techniques such as
fuzzing [16, 17, 37, 39]. However, we also acknowledge the limi-
tations of these approaches and consequently the infeasibility of
zero-defect subsystems once they exceed a certain complexity, in
particular in the light of unforeseeable threats. For this reason, in-
trusion detection and fault diagnosis and fault and vulnerability
removal starts after the system goes into production,13 which also
is imperfect in detecting only a subset of intrusions and rarely
those following unknown patterns while remaining within the op-
erational perimeter of the subsystem. It is important to notice that
despite the principled imperfection of fault, vulnerability and at-
tack prevention, detection and removal techniques, they play an
important role in increasing the time adversaries need to infiltrate
the system and in assessing the current threat level, the system is
exposed to.

4.1.2 In Production. While in production, replacement of faulty
hardware components is still possible, by providing replacement
parts to those systems that are already shipped and by not shipping
new systems with known faulty parts. Software updates remain
possible during the whole time when the system remains under
maintenance, although development teams may already have been
relocated to different projects after the production phase.

Fault tolerance, that is, a subsystem’s ability to gracefully re-
duce its functionality to a non-harmful subset (e.g., by crashing
if replicas start to deviate) or to mask errors (e.g., by outvoting
13We consider design-time penetration testing as part of the vulnerability removal
process.

8



the behavior of compromised or malicious replicas behind a major-
ity of healthy replicas, operating in consensus) forms the last line
of defense before the subsystem failure manifests as a fault. The
essential assumption for replication to catch errors not already cap-
tured by the fault and error removal stages is fault-independence
of all replicas, which is also known as absence of common mode
faults. Undetected common mode faults bear the risks of allowing
compromise of all replicas simultaneously, which gives adversaries
the ability to overpower the fault tolerance mechanisms. Crucial
building blocks for replication-based fault tolerance are therefore
the rejuvenation of replicas to repair already compromised replicas
and in turn maintain over time the required threshold of healthy
replicas (at least one for detecting and crashing and at least f + 1
to mask up to f faults) and diversification to avoid replicas from
failing simultaneously, and to cancel adversarial knowledge how
replicas can be compromised.

4.1.3 Out of Production. As long as the system is maintained,
the rejuvenation and diversification infrastructure for the system
may rely on an external supply of patches, updates and new, suffi-
ciently diverse variants for the pool of diverse subsystem images.

4.1.4 Out of Maintenance. Once the system falls out of active
maintenance, replenishment of this pool is limited to on-board di-
versification mechanisms (such as binary obfuscation14) or through
fleet-wide cross-fertilization, by exchanging diagnosis data between
systems of the same kind, which allows one system to learn from
the intrusions that happened to its peers. The final state before the
end of life of the system is a reliable cleaning step of all secrets
that remain until this time, followed by a graceful shutdown of the
system.

5 DESIGN PRINCIPLES
Figure 3 sketches one potential architecture for sustainable security
& safety and shows the abstract view of a sustainable systems and
its connections/relations with its surroundings. A system interacts
(possibly in different phases of its life cycle) with different stake-
holders. The stakeholders (or a subset thereof) usually define the
applications and objectives of a systems, e.g., the manufacturer and
developer define the primary/intended functionality of a systems.
The system’s intended applications or objectives, as well as external
factors such legal frameworks, define the overall requirements a
system must fulfill.

The center of Figure 3 shows the overall system that can be
composed frommultiple subsystems, each of which is a combination
of multiple components. Components of a subsystem are connected
with one another. Backup components (marked in grey) are required
to achieve fault tolerance, i.e., if one component of a subsystem
fails it can be (automatically) replaced by a backup component.15

The subsystems are connected and interact via defined inter-
faces (shown as tubes). As long as the interfaces and the individual

14https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-
sean_taylor-binary_obfuscation.pdf
15Backup components can also be online/active to reduce the load per component as
long as not failure has occurred.

Requirements

System

Services

Manage-
ment

Stake-
holders

Legal Requirements Functional RequirementsEnvironmental Requirements

Sub-System

Applications / Objectives

Management 
Interface

User

Manu-
facturer

Service 
Prov.

Instance n

Oper-
ator

Instance 1

Main-
tenance

Monitor
ing

Life-
cycle

Risk-
Analysis

Active Component Backup Component Interface

Figure 3: Abstract view of a sustainable system and its sur-
roundings.

subsystems are fault tolerant, the overall system can inherit this
property.16

Sustainable systems usually do not operate in isolation through-
out their life-time. They often rely on external services, e.g., cloud
services to execute computation intensive tasks. If these services
are critical for the operation of the system, the resiliency of these
services is relevant, e.g., multiple instances of the service must
be available, and the connection to the external service must be
reliable, as well.

The system’s management includes technical management as
well as abstractly controlling the system and its operation. This has
to cover both the management of the system itself and the external
services upon which the system relies. The management can be
performed by a single entity (stakeholder) or distributed among dif-
ferent stakeholders, e.g., the device manufacturer provides software
updates for the system while the user configures and monitors the
system.

Based on the challenges discussed in the preceding section, we
can already deduce certain architectural requirements and design
principles for achieving S3. In the following, we discuss these prin-
ciples and identify existing work that could serve as the initial
building blocks.

5.1 Well-defined Components and Isolation
Complex services are usually provided by complex systems. To
ensure that the complexity can be handled, breaking down the
functionality into well-defined components is essential. Further-
more, strongly isolating components and limiting interaction to
well-defined and constrained interfaces helps limiting error propa-
gation. A particular challenge is that isolation of two subsystems

16If an individual subsystem cannot provide the required fault tolerance level, the
overall system requires redundancy with regard to that subsystem.

9

https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-sean_taylor-binary_obfuscation.pdf
https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-sean_taylor-binary_obfuscation.pdf


will usually require sufficient isolation of all underlying subsystems
including the hardware.

A related design principle is to aim at separating services of
different criticality into components. The benefit is that critical
components will justify higher security and dependability invest-
ments while uncritical components can be implemented at lower
cost.

5.2 Avoid Single Points of Failure
For systems in long-term operation, it must be expected that any
subsystem could fail, especially when exposed to unforeseen or
unforeseeable attacks or changes. Subsystem failure could affect
either the functionality provided by individual subsystems, hence
impacting the safety of the components they control, or the security
of the subsystems. Anticipating this possibility, it is clear that no
single subsystem can be responsible for the safety and security of
the system as a whole. In the face of unknown threats this entails
the use of diversity to prevent common cause failures rooted in
a single unforeseen cause (see Section 5.9). For the same reason,
a multi-level approach for safety and security, with overlapping
coverages, is beneficial.

5.3 Multiple Lines of Defense
From past experiences we know that individual defenses can be
overcome by an adversary, hence, relaying on a single defensemech-
anism represents a single point of failure with respect to the goal
of protecting the system from attacks. Hence, multiple lines of de-
fense are needed to protect the system even if an individual defense
mechanism can be circumvented by an adversary. For instance,
multiple cryptographic algorithms can be combined in such a way
that an adversary has to break different cryptographic systems to
get access to critical information. However, the diversity of the
used algorithm need to be sufficient, i.e., they should be based on
different mathematical problems that cannot be easily be translated
into one another. If prime decomposition is efficiently solvable also
the direct logarithm problem can be efficiently solved and there-
fore combining two algorithms based on these problems might not
provide the desired protection. Similarly defense mechanisms, for
instance against run-time attacks, should be combined to increase
the system’s security. Control-flow integrity (CFI) [1], for instance,
has been attacked by full-function reuse attacks [12, 40] while
randomization approaches suffer from information leakage [45].
Combining both can increase the security, e.g., by relying on ran-
domization to mitigate full-function reuse attacks to undermine
CFI.

5.4 Long-term Secrets and Confidentiality
Ensuring the confidentiality of data over long periods of time is very
challenging since data that once leaked cannot become confidential
again. For instance, if the mathematical problem a cryptographic
algorithm is based on gets efficiently solvable (like the prime de-
composition for RSA) secret keys will not be confidential anymore.
Even replacing a revealed key with a new key will not solve the
problem as the new key can be retrieved by the adversary the same
way as the previous key. Similarly, if a subsystem handling secret
information has failed and has leaked the secret information, e.g.,

because an adversary has compromised the subsystem to manip-
ulate its behavior to output the secret, then a new secret can be
leaked in a similar way as long as the subsystem is not updated.
To prevent the leakage of secret information their use should be
minimized. Additionally, a single subsystem should not be allowed
to access a secret as a whole, as this subsystem would become
a single point of failure with respect to the secret information’s
confidentiality.

5.5 Robust Input Handling
A (sub)system should not make assumptions with respect to the
inputs it expects. This holds true for external inputs as well as for
inputs between subsystems. Malicious inputs can, on one hand, lead
to faults and failures in the system, like buffer overflows, which
can crash the system or could even be exploited by an adversary
to gain control over the system. On the other hand, “unexpected”
inputs can lead to undesired behavior of a system, e.g., in machine
learning based systems. Hence, a robust system should incorporate
two aspects: (a) the system should cope well with noisy and uncer-
tain real-world input data, and (b) express its own knowledge and
uncertainty of a proposed output even with unforeseen input [35].
Another aspect of robustness requires the decision-making system
to be robust against adversarial tampering with inputs.

5.6 Contain Subsystem Failure
An immediate conclusion from this requirement to tolerate arbi-
trary failures of individual subsystems is the need to confine each
subsystem into an execution environment that acts as fault con-
tainment domain and in which the subsystem may be rejuvenated
to re-establish the functionality it provides. Ideally, sustainable
secure systems should be constructed such that compromise of
any minority subset of components reveals no security sensitive
information. In particular, no such information leak should happen
from one subsystem to another (unless explicitly authorized) as
subsystems may hold secrets from multiple stakeholders. Unfor-
tunately, side channels and flaws in individual subsystems make
this very challenging for all but the most simple or robust system
components.

Rigorous interface analysis, including out-of-spec behavior, as
well as comprehensive modeling of potential coupling mechanisms
and their effects are the most prominent remedies here.

5.7 Subsystem Updates
Any subsystem could fail, e.g., due to an attack, a random fault,
or because a subsystem or mechanism has reached the end of its
lifetime before the end of the overall system’s lifetime. Therefore,
it is critical to design the system such that individual subsystems
can be updated during the operational lifetime of the system. In
order to facilitate this, the behavior of each subsystem must be fully
specified, and any updates/replacements must be checked against
this specification. For example, in the case of hardware changes,
more modern hardware may operate at higher clock frequencies,
which may need to be downscaled to interoperate with older sub-
systems. In the case of software systems, this means anticipating
the need for software updates, and ensuring that these updates
can be applied safely and securely, and not give rise to new attack

10



vectors. In the most extreme case, if a subsystem has already failed,
it should ideally be possible to restore this subsystem to a correct
state (i.e., rejuvenated).

For the hardware platform this favors the use of reconfigurable
hardware like soft-cores and FPGA platforms rather than custom
ASICs. Although the latter can be custom-tailored and hence exhibit
lower cost, complexity and area, the reconfigurability of the former
is a significant advantage for long-living systems.

5.8 Replicate to Tolerate Subsystem Failure
At the application level, if the functionality provided by the fail-
ing subsystem cannot be compensated by lower-level components
(possibly at a different quality of service), the subsystem must be
replicated such that failure of a subset of these replicas can be
masked behind the majority of still healthy replicas operating in
consensus. Considering autonomous driving as a use case, route
planning is an example of a subsystem, which may fail without con-
sequence to the safety requirement for not crashing into obstacles,
provided an independent collision detection system detects all ob-
stacles and causes the car to stop. Likewise, the collision detection
system itself must not fail and its components must therefore be
replicated to tolerate failure in a subset of its components.

Going down the software stack, the same principled mechanisms
apply for replicating, diversifying and rejuvenating replicas, respec-
tively for relying on fall-back functionality if the subsystem is not
essential or its functionality can be provided (at least partially) by
the fall-back subsystems. However, the infrastructure available for
these mechanisms decreases and ultimately ceases to exist when
reaching the lowest software levels (i.e., the operating system kernel
or firmware).

The costs of replication can be partially avoided for those com-
ponents for which replacement or at least fall-back functionality is
present. These components still require rejuvenation, but fall-back
components ensure safety during replacement.

If recovery can be accomplished safely within a time shorter
than the natural “fault tolerance time” of the application, replication
may be avoided as well. To leverage that, fast recovery must be
accomplished (avoiding complete reset, e.g.), and in order to make
sure recovery is possible from all error states, self-stabilization is
beneficial.

5.9 Diversify Nodes and Components
From distributed systems research we know that simple replicated
execution is not enough to evade attacks [5]. Instead, replicas must
be sufficiently diverse to prevent accidental faults from manifesting
as failures in all replicas and to prevent adversaries from being able
to simultaneously intrude into all replicas (i.e., without sequential
effort). Moreover, replicas must be rejuvenated to establish fresh
and sufficiently diverse instances faster than adversaries will be
able to compromise them [46].

Anticipating logical or implementation level compromise, Völp
et al. [52] sketch a first architectural solution for maintaining se-
curity despite compromise of encryption algorithms. Rather than
relying on a single such algorithm, secret sharing techniques [44]
are used in combination with classical ciphers such that no single

cipher encrypts the whole secret. Hence, compromise only par-
tially reveals information and in such a way that reconstructing the
secret remains difficult. Again rejuvenation and in consequence re-
encryption of the secret maintains security over extended periods
of time.

5.10 Enable Relocation
Hardware, in particular non-reconfigurable hardware, must fol-
low a different strategy to evade faulty subsystems. Rather than
rejuvenating, which would imply reconfiguration possibilities (i.e.
only available on FPGAs or similar circuits), the software must
be relocated from permanently damaged hardware subsystems to
healthy spares, deactivating faulty circuits or using them in a way
where faults cannot manifest in subsystem failure. One essential
requirement for such a relocation is the reliable cleaning of plat-
form components from secrets held on behalf of a stakeholder, in
particular if the interests of this stakeholder in a subsystem changes.
In particular when relocating functionality from broken to healthy
components, such cleaning must still work reliably or the com-
ponent cannot be reused for other functionality and information
extraction must be prevented.

5.11 Adaptive Systems
The security and safety of the complex system is dependent on sev-
eral uncertainties which make it more challenging to design secure
(sub)systems during the design stage. Therefore, these (sub)systems
must be intelligent enough to adapt the uncertainties and new
conditions during the runtime. In particular, (sub)systems should
be able to detect incidents like faults and failures, and react to
them, i.e., adapt the system. In case of an incident is detected the
system should adapt, for instance by enabling active protection
mechanism, rejuvenation, reconfiguration, as well as (guaranteed)
recovery from the incident.

Adaption and reconfiguration is relevant in order to stay ahead of
adversaries, but it also becomes necessary when the environment
changes in which the system operates or when the interest of
stakeholders in individual subsystems changes. For example, if an
autonomous car is sold, the old owner’s personalization needs to
be reset in order to reinitialize the car for the new owner.

5.12 Minimize Assumptions
With the envisioned long life time and unforeseeable changes ahead,
assumptions that seem plausible at the time of design may no more
hold during later phases of use. This may be due to requirement
changes or environmental changes, as outlined in Section B and Sec-
tion C, respectively. Also, attackers may find new ways of violating
assumptions and thus defeat safety or security measures that rely
on them, or open coverage holes. For these reasons, assumptions,
although often substantially simplifying implementation, need to
be minimized, as they weaken the system’s robustness. Examples
for such assumptions are the single-fault assumption, the already
mentioned “hardness” of problems for cryptography, synchrony
between components, interface design considering a limited space
of input behaviors only, etc.

11



5.13 Simplicity and Verifiability
Most existing systems suffer from high (sub)system complexity. So
simplicity is definitely a feature, and with the integration of novel
measures for enhancing safety and security, the right cost trade-off
must be found. A thorough analysis of all possible behaviors under
all perceivable faults, ideally formal, is possible only for very small
and simple entities. To perform such verification and validation,
an accurate but abstract model of (sub)systems is specified and
then validated/verified based on the defined security/functional
properties under the design/environmental constraints. While due
to performance demands it is out of reach to keep the whole system
that simple, the trusted core typically required in fault-tolerant and
secure architectures can be kept sufficiently small. Such a small
and simple unit is furthermore less likely to suffer from unforeseen
changes and threats.

6 RESEARCH DIRECTIONS
To tackle all challenges identified in the previous sections and en-
able systems that fulfill the necessary design principles research
in various areas has to be advanced beyond the current state. Re-
search directions and approaches for some of the most pressing
challenges to advance towards the vision of sustainable secure and
safe systems are listed below.

6.1 Methodology for Building S3 Systems
In the previous sections we have sketched how architectural hy-
bridization lends a pathway to the construction of sustainable safe
and secure (S3) systems. Essentially, by solving the hard problem
of simultaneously achieving safe, secure, and timely control of the
assets the system is entrusted with (cyber-only as well as cyber-
physical), we allow it to endure both faults and intrusions within
the normal operation envelope, as well as to gracefully reduce
its functionality to fail-safe or even fail-operational modes, in the
event of extreme hazards (accidental or intentional). Still, principled
and paradigmatic research is required to turn this approach into a
methodology for the systematic construction of S3 systems.

Functionality decomposition methods should inspire the defini-
tion of hybridisation boundaries between ultimately trusted and
less trusted subsystems. Adequate isolation principles should con-
fer the necessary level of trustworthiness to substantiate that trust,
namely, through spacial isolation across several sub-systems, or
locally, through combinations of physical and logical isolation en-
forcing trustworthy code execution (Section 6.2).

The assumed effectiveness of countermeasures (e.g., error detec-
tion and reaction mechanisms Section 6.3) and the risk of failure,
must be assessed and validated on the basis of appropriate system
models, not only of the intended behavior, but more importantly
also of the behavior that can realistically be expected in the pres-
ence of faults and compromise (Section 6.5), to obtain arguments
for the confidence placed in the underlying system assumptions.

Last but not least, architectural hybridisation hinging on systems
having loci (‘hybrids’) with distinct system and fault assumptions,
the availability of, and trust on, such hybrids, and on their interplay
with the payload system, becomes of paramount importance. Such
functionalitymust thus be implemented and hardened to the highest
standards possible. This includes not only designing and verifying

hardware primitives providing ultra-reliable services locally, but
also devising techniques to algorithmically build high trust from
a majority of non-perfect but good enough instances, operating
in consensus (Section 6.4 very naturally assisted by the above-
mentioned hardware primitives).

6.2 Local Hybrid (Trusted) Code Execution
Many application scenarios support physical separation as isolation
mechanism to confine failures in untrusted components and prevent
them from causing faults in other trusted or untrusted components.
For example, hybridization approaches such as MinBFT [51] rely
on a physically separated, trusted-trustworthy component — the
USIG — to enforce sequentiality and monotonicity of messages
and in turn prevent equivocation in MinBFT’s leader-based consen-
sus protocol. Implementation options include utilizing specifically
hardened TPMs, holding the monotonic counter and the keys for
generating authentic message signatures that are required by the
USIG.

However, the setting of this hybrid solution is limited to the
processing of cyber assets only and conveys no protection against
secret leakage since no further precautions are installed to prevent
individual faulty replicas from interacting with their environment.
In this case, spacial separation is no longer a viable option, due
to bypassing possibilities or due to increased requirements on the
untrusted components to not cause unsafe or insecure behavior
through direct interaction with critical system components (e.g.,
the actuators impacting the physical environment of the cyber sys-
tem). These other application scenarios require further research on
provisioning and enforcing distinct trust assumptions in software
components that coexist on the same system. Naturally, trusted
execution environments such as Intel SGX and ARM Trustzone
form an important first step in this direction. However, they do
not yet support all the properties S3 systems must provide and
often the complexity of their implementation (e.g., having to rely
on the correctness of the entire core and its firmware) reduces the
coverage of their trustworthiness assumption.

In this research line, we will therefore focus on techniques to
enable locally, within the same multi- and manycore, system hard-
and software components with distinguished sets of trust assump-
tions to enable local hybridization, for example, but not exclusively,
for supervising actuation of controlled physical systems.

6.3 Building Systems with Sustainable Security
& Safety

The sound and robust implementation of complex software sys-
tems is not well understood in practice and we are far away from
actually building systems that provide sustainable security & safety.
As discussed earlier, new types of (software) attacks are constantly
evolving and there is a constant stream of new vulnerabilities that
are discovered. The experiences of the last two decades have shown
that relying on security tools and developer training to avoid such
vulnerabilities has substantial limitations. Especially in situations
in which the complexity of the system exceeds a certain threshold,
neither approach is sufficient to reasonably guarantee the absence

12



of security vulnerabilities. A prime example is the Heartbleed vul-
nerability in the crypto library OpenSSL that was only detected
several years after it was introduced by a programmer.

To improve this situation in a fundamental way, we need to in-
vestigate novel methods for securing computer systems at all levels
of their development life cycle such that they can deal with software
failures and subsystem compromises. Such methods need to take
all relevant user groups – ranging from system designers through
developers to end users – into account, all of them need to apply
both security and safety principles in a reliable and robust way. For
example, we need to investigate secure application programming
interface (API) design, secure compiler chains that eliminate to-
day’s low-level vulnerabilities, and sound mechanisms to develop
secure components for complex applications. Moreover, we will
develop mechanisms that enable the secure and safe integration
of (potentially untrusted) third-party components into an existing
system. To achieve this goal, we need to design key components
in a robust way that will ensure the security characteristics for
the operation of the system over its entire lifetime. Such system
architectures must enable a dynamic, gradual adaptation of security
concepts and controls in response to changing security and safety
requirements. The development methods and system architectures
to be explored should allow for the secure and safe integration of
untrustworthy or unchangeable system parts, even if those parts
might have weaknesses. The resulting system should detect and
isolate software subsystem failures and enable a recovery in case
one or multiple subsystems are compromised. We will investigate
concepts like secure confinement, compartmentalization, diversifi-
cation, and formal proofs of correct operation to deal with novel
attack scenarios.

6.4 Efficient and Scalable Consensus
Consensus protocols provide a solution to many of the above chal-
lenges, especially in terms of dealing with the detection and re-
covery of subsystem failure. Recently there have been significant
advances in improving the security and efficiency of distributed
consensus by leveraging available hardware security mechanisms.
For example, MinBFT [51] uses the trustworthy USIG service (see
Section 6.2) to prevent replicas equivocating and thus reduces the
total number of replicas required to tolerate f failures from n=3f+1
to n=2f+1. Similarly, FastBFT [34] uses a hardware-based TEE to
significantly improve efficiency and scalability of consensus with
equivalent security guarantees.

However, although hardware security mechanisms bring clear
advantages, reliance on such mechanisms could also limit the sce-
narios in which the consensus protocol could be used. For exam-
ple, if even one of the replicas does not have access to a suitable
trustworthy component, neither MinBFT nor FastBFT can be used.
Real-world autonomous systems could be made up of heteroge-
neous components (e.g. different types of autonomous vehicles in a
platoon).

Therefore it is still an open research problem to develop efficient
consensus mechanisms whilst minimizing assumptions about the
underlying hardware. In this line of research we aim to develop
new consensus protocols and techniques that are able to oppor-
tunistically make use of available hardware security features, but

can also be used in cases where only a subset of replicas supports
these features.

6.5 Appropriate Consideration of Assumptions
Undoubtedly, assumptions are instrumental for implementing any
real-world system. However, at the same time experience shows
that the violation of assumptions has been the cause for many dis-
asters and security breaches. Often assumptions are deeply rooted
in paradigms one uses (e.g. low-skew clock distribution in synchro-
nous design) or existing results one is building on (e.g. correctness
proofs of algorithms). Therefore, careful reflection of all assump-
tions and their coverage is crucial for obtaining high safety and
security, evenmore so in the context of sustainability with unknown
future challenges lying far ahead of the actual design phase.

Consequently, we consider it one of the formidable challenges
for S3 to (a) generally avoid making assumptions wherever pos-
sible, and (b) identify, justify and carefully validate every single
assumption that is made. This encompasses all the examples given
in Section 5.12, like “independence” of subsystem failures, or “isola-
tion” between processes. Their validation must definitely entail the
identification, comprehension and modeling of the relevant unin-
tended and non-functional behaviors of hardware and software, or,
alternatively, some kind of (ideally formal) evidence.

6.6 Trustworthy and Reliable Hardware
Modern computer systems and the underlying hardware are becom-
ing increasingly faster, efficient, interconnected and consequently
more complex introducing the possibility of new bugs and secu-
rity related vulnerabilities. The semiconductor industry employs
a combination of different verification techniques to ensure the
quality and security of System-on-Chip (SoC) designs during the
development life cycle. However, a growing number of increas-
ingly sophisticated attacks are starting to leverage cross-layer bugs
by exploiting subtle interactions between hardware and software,
as recently demonstrated through a series of real-world exploits
with significant security impact that affected all major hardware
vendors.

A deep dive into microarchitectural security from a hardware
designer’s perspective seems to be indispensable. Currently there
exists a protection gap in practice that leaves large chip designs
vulnerable to software-based attacks. In particular, existing verifica-
tion approaches fail to detect specific classes of vulnerabilities, i.e.,
bugs that evade detection by current verification techniques while
being exploitable from software. We have already observed such
vulnerabilities in real-world SoCs. Patching these hardware bugs
may not always be possible and can potentially result in a product
recall.

Our recently conducted hardware security competition affirmed
that current verification approaches are insufficient.17 In the com-
petition 54 independent teams of researchers competed world-wide
over a period of twelve weeks to catch inserted security bugs in
SoC RTL designs, and an in-depth systematic evaluation of state-
of-the-art verification approaches. Our findings indicate that even
combinations of techniques will miss high-impact bugs due to the
large number of modules with complex interdependencies as well
17https://hack-dac18.trust-sysec.com/

13

https://hack-dac18.trust-sysec.com/


as fundamental limitations of current detection approaches. Indeed
we showed that we can craft a real-world software attack that ex-
ploits one of the RTL bugs that evaded detection. These results
show clearly that there is an urgent need for novel and effective
methods to analyze the security of hardware designs at the deepest
level and to avoid hardware/firmware bugs that can be exploited
(remotely) by software.

7 CONCLUSION
Achieving sustainable security & safety in real-world systems is a
non-trivial challenge. It goes well beyond our current paradigms for
building secure systems because it calls for consideration of safety
aspects and anticipation of threats beyond the foreseeable threat
horizon. It also goes beyond our current thinking about safety by
broadening the scope to include deliberate faults induced by an
adversary. Nevertheless, sustainable security & safety will become
increasingly necessary as we become increasingly dependent on
these (ICT) systems. Even if the full vision of sustainable security
& safety is not fully achieved, any advances in this direction could
have a significant impact on the design of future system.We have set
out our vision for sustainable security & safety, identified the main
challenges currently faced, and proposed a set of design principles
towards overcoming these challenges and achieving this vision.

8 ACKNOWLEDGEMENTS
This work was supported by the Intel Research Institute for Col-
laborative Autonomous and Resilient Systems (ICRI-CARS). The
authors thank Muhammad Shafique for his helpful suggestions on
this manuscript.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM Transactions on
Information System Security 13 (2009).

[2] National Highway Traffic Safety Administration. 2006. Vehicle Survivability and
Travel Mileage Schedules . (2006). https://crashstats.nhtsa.dot.gov/Api/Public/
ViewPublication/809952

[3] Ross Anderson. 2018. Making Security Sustainable. Commun. ACM 61, 3 (Feb.
2018), 24–26. https://doi.org/10.1145/3180485

[4] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. 2004. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing 1, 1 (Jan 2004), 11–33. https://doi.org/10.1109/TDSC.2004.2

[5] A. N. Bessani, P. Sousa, M. Correia, N. F. Neves, and P. Verissimo. 2008. The
Crutial Way of Critical Infrastructure Protection. IEEE Security Privacy 6, 6 (Nov
2008), 44–51. https://doi.org/10.1109/MSP.2008.158

[6] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2016. Dedup
Est Machina: Memory Deduplication as an Advanced Exploitation Vector. In
37th IEEE Symposium on Security and Privacy (S&P).

[7] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto,
Kari Kostiainen, Urs Müller, and Ahmad-Reza Sadeghi. 2017. DR.SGX: Hardening
SGX Enclaves against Cache Attacks with Data Location Randomization. arXiv
preprint arXiv:1709.09917 (2017).

[8] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-
Reza Sadeghi. 2017. CAn’t Touch This: Software-only Mitigation against
Rowhammer Attacks targeting Kernel Memory. In 26th USENIX Security Sympo-
sium (USENIX Security 17). Vancouver, BC. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/brasser

[9] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In USENIX Workshop on Offensive Technologies.

[10] Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert. 2006. Soft-
ware mitigations to hedge AES against cache-based software side channel vul-
nerabilities. 2006 (2006).

[11] E. Brickell, G. Graunke, and J.-P. Seifert. 2006. Mitigating cache/timing attacks
in AES and RSA software implementations. In RSA Conference 2006, session
DEV-203.

[12] Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity. In 24th USENIX Security Symposium (USENIX Sec).

[13] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
hardware extensions for strong software isolation.

[14] ENISA. 2013. Algorithms, Key Sizes and Parameters Report - 2013 recommendations.
Technical Report. www.enisa.europe.eu.

[15] Ilias Giechaskiel, Cas Cremers, and Kasper B. Rasmussen. 2016. On Bitcoin Secu-
rity in the Presence of Broken Cryptographic Primitives. In Computer Security –
ESORICS 2016. Springer International Publishing, 201–222.

[16] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Automated white-
box fuzz testing. In Annual Network & Distributed System Security Symposium
(NDSS).

[17] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: Whitebox
Fuzzing for Security Testing. Queue 10, 1 (Jan. 2012).

[18] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache Attacks on Intel SGX. In European Workshop on Systems Security.

[19] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js:
A Cache Attack to Induce Hardware Faults from a Website. In 13th Conference
on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA).

[20] T. Huffmire, B. Brotherton, G.Wang, T. Sherwood, R. Kastner, T. Levin, T. Nguyen,
and C. Irvine. 2007. Moats and Drawbridges: An Isolation Primitive for Reconfig-
urable Hardware Based Systems. In 2007 IEEE Symposium on Security and Privacy
(SP ’07). 281–295.

[21] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In 2013 IEEE Symposium on Security
and Privacy.

[22] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. SSA: A Shared Cache
Attack That Works across Cores and Defies VM Sandboxing – and Its Application
to AES. In 2015 IEEE Symposium on Security and Privacy.

[23] ISO/TC 22/SC 32. 2011. ISO26262: Road vehicles - Functional safety. (2011).
[24] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,

Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping Bits in Memory
Without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
In 41st Annual International Symposium on Computer Architecture (ISCA).

[25] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-prints (Jan.
2018). arXiv:1801.01203

[26] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO ’96).

[27] B.W. Lampson. 1973. A Note on the Confinement Problem. Commun. ACM 16,
10 (Oct. 1973), 613–615.

[28] Éireann Leverett, Richard Clayton, and Ross Anderson. 2017. Standardisation
and Certification of the ‘Internet of Things’. https://www.cl.cam.ac.uk/~rja14/
Papers/weis2017.pdf. (2017).

[29] Eireann Leverett, Richard Clayton, and Ross Anderson. 2018. Standardis-
ation and Certification of Safety, Security and Privacy in the ‘Internet of
Things’. https://publications.europa.eu/en/publication-detail/-/publication/
80bb1618-16bb-11e8-9253-01aa75ed71a1/language-en. (2018).

[30] Antonio Lima, Francisco Rocha, Marcus Völp, and Paulo Esteves-Veríssimo. 2016.
Towards Safe and Secure Autonomous and Cooperative Vehicle Ecosystems. In
2ndACM Workshop on Cyber-Physical Systems Security and Privacy (co-located
with CCS). Vienna, Austria.

[31] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. ArXiv e-prints (Jan. 2018). arXiv:1801.01207

[32] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy.

[33] Jian Liu,Wenting Li, GhassanO. Karame, and N. Asokan. 2016. Scalable Byzantine
Consensus via Hardware-assisted Secret Sharing. arXiv:1612.04997 [cs] (Dec.
2016). http://arxiv.org/abs/1612.04997 arXiv: 1612.04997.

[34] Jian Liu, Wenting Li, Ghassan O. Karame, and N. Asokan. 2018. Scalable Byzan-
tine Consensus via Hardware-assisted Secret Sha ring. IEEE Trans. Computers
(2018). https://doi.org/10.1109/TC.2018.2860009 https://doi.org/10.1109/TC.2018.
2860009; Technical report version: [33].

[35] Rowan McAllister, Yarin Gal, Alex Kendall, Mark Van Der Wilk, Amar Shah,
Roberto Cipolla, and Adrian Weller. 2017. Concrete Problems for Autonomous
Vehicle Safety: Advantages of Bayesian Deep Learning. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI).

[36] T Mikolajick, A Heinzig, J Trommer, T Baldauf, and W M Weber. 2017. The
RFET—a reconfigurable nanowire transistor and its application to novel electronic
circuits and systems. Semiconductor Science and Technology 32, 4 (2017), 043001.
http://stacks.iop.org/0268-1242/32/i=4/a=043001

[37] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. Commun. ACM 33, 12 (Dec. 1990).

14

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/809952
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/809952
https://doi.org/10.1145/3180485
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/MSP.2008.158
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/brasser
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/brasser
http://arxiv.org/abs/1801.01203
https://www.cl.cam.ac.uk/~rja14/Papers/weis2017.pdf
https://www.cl.cam.ac.uk/~rja14/Papers/weis2017.pdf
https://publications.europa.eu/en/publication-detail/-/publication/80bb1618-16bb-11e8-9253-01aa75ed71a1/language-en
https://publications.europa.eu/en/publication-detail/-/publication/80bb1618-16bb-11e8-9253-01aa75ed71a1/language-en
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1612.04997
https://doi.org/10.1109/TC.2018.2860009
https://doi.org/10.1109/TC.2018.2860009
https://doi.org/10.1109/TC.2018.2860009
http://stacks.iop.org/0268-1242/32/i=4/a=043001


[38] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:
How SGX Amplifies The Power of Cache Attacks. Technical Report.
arXiv:1703.06986 [cs.CR]. https://arxiv.org/abs/1703.06986.

[39] Peter Oehlert. 2005. Violating Assumptions with Fuzzing. IEEE Security and
Privacy 3, 2 (March 2005).

[40] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In 36th
IEEE Symposium on Security and Privacy (S&P).

[41] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In Detection of Intrusions and Malware, and Vulnerability Assessment.

[42] Mark Seaborn and Thomas Dullien. 2016. Exploiting the DRAM rowhammer
bug to gain kernel privileges. https://googleprojectzero.blogspot.de/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html. (2016).

[43] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). In ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[44] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (Nov. 1979),
612–613. https://doi.org/10.1145/359168.359176

[45] Kevin Snow, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen, Fabian
Monrose, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the
Effectiveness of Fine-Grained Address Space Layout Randomization. In 34th IEEE
Symposium on Security and Privacy (Oakland 2013).

[46] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo. 2010. Highly
Available Intrusion-Tolerant Services with Proactive-Reactive Recovery. IEEE
Transactions on Parallel and Distributed Systems 21, 4 (April 2010), 452–465.
https://doi.org/10.1109/TPDS.2009.83

[47] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2017. CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Management. In 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC. https://www.usenix.
org/conference/usenixsecurity17/technical-sessions/presentation/tang

[48] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss,
Clementine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano
Giuffrida. 2016. Drammer: Deterministic Rowhammer Attacks on Commodity
Mobile Platforms. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[49] Paulo Verissimo, Miguel Correia, Nuno Ferreira Neves, and Paulo Sousa. 2009.
Intrusion-Resilient Middleware Design and Validation. In Information Assurance,
Security and Privacy Services. Handbooks in Information Systems, Vol. 4. Emerald
Group Publishing Limited, 615–678. http://www.navigators.di.fc.ul.pt/archive/
papers/annals-IntTol-compacto.pdf

[50] Paulo Verissimo, Nuno Ferreira Neves, and Miguel Correia. 2003. Intrusion-
Tolerant Architectures: Concepts and Design. In Architecting Dependable Systems.
LNCS, Vol. 2677. Springer-Verlag, 3–36. http://www.navigators.di.fc.ul.pt/docs/
abstracts/archit-03.html Extended version in http://hdl.handle.net/10455/2954.

[51] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo. 2013.
Efficient Byzantine Fault-Tolerance. IEEE Trans. Comput. 62, 1 (Jan. 2013), 16–30.
https://doi.org/10.1109/TC.2011.221

[52] Marcus Völp, Francisco Rocha, Jeremie Decouchant, Jiangshan Yu, and Paulo
Esteves-Verissimo. 2017. Permanent Reencryption: How to Survive Generations
of Cryptanalysts to Come. In Security Protocols XXV, Frank Stajano, Jonathan
Anderson, Bruce Christianson, and Vashek Matyáš (Eds.). Springer International
Publishing, Cham, 232–237.

[53] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In 23rd USENIX Security Symposium
(USENIX Security 14).

15

https://arxiv.org/abs/1703.06986
https://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/TPDS.2009.83
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
http://www.navigators.di.fc.ul.pt/archive/papers/annals-IntTol-compacto.pdf
http://www.navigators.di.fc.ul.pt/archive/papers/annals-IntTol-compacto.pdf
http://www.navigators.di.fc.ul.pt/docs/abstracts/archit-03.html
http://www.navigators.di.fc.ul.pt/docs/abstracts/archit-03.html
https://doi.org/10.1109/TC.2011.221


PRELIMINARY LIST OF CHALLENGES
The following is a summarized list of the challenges presented in
Section 3.

A Subsystem Failures
A.1 Hardware failure.

A.1.(1) How can we protect spares from environmental and ad-
versarial influences such that they remain available when
they are required?

A.1.(2) How can we assert the sustainability of emerging material
circuits, without at the same time giving adversaries the
tools to stress and ultimately break these circuits?

A.1.(3) How can we protect confidential information in subsys-
tems or, if this is not possible over extended periods of time,
how can we ensure confidential information is securely
transferred and protected in its new location without resid-
uals in the source subsystem revealing this information?

A.1.(4) How can we prevent one compromised hardware subsys-
tem from compromising the integrity of another subsys-
tem?

A.1.(5) How canwe prevent adversaries from exploiting/triggering
safety/security functionality of excluded components?

A.1.(6) How can we model erroneous behavior of hardware com-
ponents in the presence of external disturbances?

A.1.(7) How can we construct inexpensive, fine grain isolation
domains to confine such errors?

A.2 Software failure.

A.2.(1) How to design systems that can detect and isolate software
subsystem failures?

A.2.(2) How to transfer software attack mitigation strategies be-
tween domains (e.g., PC to embedded)?

A.3 Subsystem compromise.

A.3.(1) How to recover a system when multiple subsystems are
compromised?

A.3.(2) How to detect subsystem compromised by a stealthy ad-
versary?

A.3.(3) How to react to the detection of a (potentially) compro-
mised subsystem?

A.3.(4) How to prevent the leakage of sensitive information from
a compromised subsystem?

A.3.(5) How to securely re-provision a subsystem after all its se-
crets have been leaked?

A.4 Specification failure.

A.4.(1) How to design subsystems that may fail at the implementa-
tion, but not at the specification level (and at what costs)?

A.4.(2) If specification faults are inevitable, how to design systems
in which subsystems can follow different specifications
whilst providing the same functionality, in order to benefit
from diversity specifications and assumptions?

A.4.(3) How to recover when one of the essential systems has been
broken due to a specification error (e.g., how to recover
from a compromised cryptographic subsystem)?

B Requirement Changes
B.1 Regulatory changes.

B.1.(1) How to retroactively change the designed security, privacy,
and/or safety guarantees of a system?

B.1.(2) How to prove that an already-deployed system complies
with new regulations?

B.2 User expectation changes.

B.2.(1) How can a system be extended and adapted to meet new
expectations after deployment?

B.2.(2) How to demonstrate to users and other stakeholders that
an already-deployed system meets their new expectations?

B.3 Design lifetime changes.

B.3.(1) How to determinewhether a deployed systemwill retain its
safety and security guarantees for an even longer lifetime?

B.3.(2) How to further extend the safety and security guarantees
of a deployed system?

C Environmental changes
C.1 New threat vectors.

C.1.(1) How to tolerate failure of subsystems due to unforeseeable
threats?

C.1.(2) How to avoid single points of failure that could be suscep-
tible to unforeseen threats?

C.1.(3) How to improve the modeling of couplings and dependen-
cies between subsystems such that the space of “unfore-
seeable” threats can be minimized?

C.2 Unilateral system/service changes.

C.2.(1) How to design systems such that any third-party services
on which they depend can be safely and securely changed?

C.2.(2) How can a system handle unilateral changes of (external)
systems or services?

C.3 Third-party system/service fails.

C.3.(1) How can a system handle the failure or unavailability of
external services?

C.3.(2) How to design systems such that any third-party services
on which they depend can be safely and securely changed
after they have already failed?

C.4 Maintenance resource becomes unavailable.

C.4.(1) How to identify all maintenance resources required by a
system?

C.4.(2) How to maximize the maintenance lifetime of a system
whilst minimizing cost?

C.4.(3) How to continue maintaining a system when a required
resource becomes completely unavailable?

D Maintainer Changes
D.1 Implementing a change of maintainer.

D.1.(1) How to ensure that a system remains secure and safe even
under a new maintainer?

D.1.(2) How to securely inform the system that a change of main-
tainer has taken place?

16



D.2 System becomes unmaintained.

D.2.(1) How can a system decide that it is no longer maintained?
D.2.(2) How should an unmaintained system behave?

E Ownership Changes
E.1 Cooperative ownership changes.

E.1.(1) How to securely inform the system about the change in
ownership, without opening a potential attack vector?

E.1.(2) How to erase sensitive data during transfer of ownership,
without allowing the previous owner to later erase us-
age/data of the new owner?

E.2 Non-cooperative ownership change.

E.2.(1) How to automatically detect non-cooperative ownership
change?

E.2.(2) How to erase sensitive data after loss of ownership, without
allowing the previous owner to erase usage/data of the new
owner?

17


	Abstract
	1 Introduction
	2 System Model
	3 Challenges of Long-Term Operation
	A Subsystem Failures
	B Requirement Changes
	C Environmental changes
	D Maintainer Changes
	E Ownership Changes

	4 Technical Implications
	4.1 S3 Lifecycle

	5 Design Principles
	5.1 Well-defined Components and Isolation
	5.2 Avoid Single Points of Failure
	5.3 Multiple Lines of Defense
	5.4 Long-term Secrets and Confidentiality
	5.5 Robust Input Handling
	5.6 Contain Subsystem Failure
	5.7 Subsystem Updates
	5.8 Replicate to Tolerate Subsystem Failure
	5.9 Diversify Nodes and Components
	5.10 Enable Relocation
	5.11 Adaptive Systems
	5.12 Minimize Assumptions
	5.13 Simplicity and Verifiability

	6 Research Directions
	6.1 Methodology for Building S3 Systems
	6.2 Local Hybrid (Trusted) Code Execution 
	6.3 Building Systems with Sustainable Security & Safety 
	6.4 Efficient and Scalable Consensus 
	6.5 Appropriate Consideration of Assumptions 
	6.6 Trustworthy and Reliable Hardware 

	7 Conclusion
	8 Acknowledgements
	References
	A Subsystem Failures
	B Requirement Changes
	C Environmental changes
	D Maintainer Changes
	E Ownership Changes


